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A continuous bridge is modelled as a multi-span continuous Timoshenko beam
with non-uniform cross-section. The vibration behaviour of this beam subjected to
moving loads is analyzed by Hamilton's principle with the intermediate point
constraints represented by very sti! linear springs. A method based on the modal
superposition and optimization technique is developed to identify the moving
forces in the time domain. The damped least-squares method is used in the
identi"cation to provide bounds to the results. The errors in the moving force
identi"cation are discussed in the paper. Both computation simulations and
laboratory tests show that the method is e!ective for identifying the moving loads
using di!erent combinations of measured responses

( 1999 Academic Press
1. INTRODUCTION

The problem of bridge vibration caused by moving vehicles has been studied for
many years. The research mainly focused on the e!ect of di!erent parameters such
as suspension systems, road surface roughness, bridge parameters, vehicle
parameters and damping on bridge responses. The bridge is modelled in a variety of
ways using the "nite element method. The vehicle is also modelled with di!erent
degrees of complexity. However, no work is known to the authors which
investigates the real interaction forces between the vehicle and the bridge deck.
A direct way to study these forces is to use an instrumented vehicle to measure
them. Whittemore et al. [1] and Cantieni [2] have given summaries on some of
these systems which are subjected to bias. These all indicate the need to develop
a method to measure the dynamic interaction forces using an unbiased random
sample of vehicles.

Law et al. [3] models the structure and forces with a set of second order
di!erential equations. The forces are represented as step functions in a small time
interval. These equations of motions are then expressed in the modal co-ordinates,
and these uncoupled equations are solved by convolution in the time domain. The
forces are then identi"ed using the modal superposition principle. Law et al. [4]
performs Fourier transformation on the equations of motions, which are expressed
in modal co-ordinates. The Fourier transforms of the responses and the forces are
0022-460X/99/470377#20 $30.00/0 ( 1999 Academic Press
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related in the frequency domain, and the time histories of the forces are found
directly by the least-squares method. Later, Chan et al. [5] identify the forces
completely in the modal co-ordinates. Measured displacements are converted into
modal displacements with an assumed shape function. The modal velocities and
accelerations are then obtained by di!erentiation. The forces are then identi"ed
solving the uncoupled equations of motions in modal co-ordinates. Law and Fang
[6] have also reported a state estimation approach in which the state-space
formulation of the dynamic system is solved using dynamic programming with
minimization of the errors between the measured and the reconstructed responses
from the identi"ed moving forces.

All the above approaches are based on the Bernoulli}Euler beam theory, and
they refer to the interaction with a simply supported beam. But there are a lot of
multi-span continuous bridges of large cross-section, and the e!ect of variation of
the cross-sectional dimensions on the dynamic properties cannot be neglected. The
e!ect of rotatory inertia and of shear deformation must be considered.

Lee [7] and later Zheng et al. [8] have studied the vibration behaviour of
a multi-span continuous bridge modelled as a multi-span non-uniform continuous
Bernoulli}Euler beam under a set of moving loads using di!erent assumed mode
shapes. Wu and Dai [9], Henchi and Fafard [10] used the same Bernoulli}Euler
beam and the "nite element transfer matrix approach. Wang [11] and Wang and
Lin [12] have studied the vibration of a continuous beam and a T-frame bridge
deck using the Timoshenko beam model. In the present work, the vibration
behaviour of the multi-span non-uniform Timoshenko beam subjected to a set of
moving loads is analyzed based on Hamilton's principle with the intermediate
point constraints represented by very sti! linear springs. The loads can take up any
initial positions on the beam. A method to identify these moving forces in the time
domain is then developed based on the modal superposition and optimization
technique. Since the inverse problem always produces unbounded results [13] due
to the non-continuity of the dependence of the results with the measured responses,
a damped least-squares method is used to smooth out the large variations in the
identi"ed forces. Both single and two forces moving on the beam are identi"ed
using displacement or strain measurements at several distributed points on the
beam. Computation simulations and laboratory results show that the method is
e!ective and robust, and acceptable results can be obtained from strain and
displacement measurements.

2. THEORY OF MOVING FORCE IDENTIFICATION

2.1. VIBRATION ANALYSIS OF A MULTI-SPAN BRIDGE

Figure 1 shows a continuous Timoshenko beam with (Q!1) intermediate point
supports under N

f
number of moving loads. The beam is constrained at these

supports. The loads P
i
(t) (i"1, 2,2,N

f
) are moving as a group at a prescribed

velocity l along the axial direction of the beam from left to right. l is assumed
constant in this study. The load locations are described by xL

i
(t) with

xL
i
(t)"xL

i0
#lt where xL

i0
is the initial location of the load P

i
(t). The bending



Figure 1. A continuous beam with (Q!1) intermediate point supports under N
f

moving forces.
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moment and the transverse shear force of the beam are given as

M(x)"EI(x)
Lt(x, t)

Lx
,

<(x)"iGA(x) C
Ly(x, t)

Lx
!t(x, t)D , (1)

where G is the shear modulus of the beam material and A(x) is the cross-sectional
area, E is the Young's modulus, I (x) is the moment of the inertia of the beam
cross-section, i is the shear coe$cient, y (x, t) is the transverse displacement
function of the beam, t(x, t) is the angle of rotation at a cross-section.

The kinetic energy ¹ of the beam, the strain energy ;
e
, the potential energy due

to point constraints ;
Q
, and the work done = due to the moving loads can be

written for the Timoshenko beam as follows:
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d (x!xL
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(t))P
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(t)y(x, t) dx, (2)

where o is the mass density of the material of the beam; x
i
(i"0, 1, 2,2, Q) are

co-ordinate of the intermediate point supports and end supports and d (t) is the
Dirac delta function. c(x) is the radius of gyration of the beam cross-section. k is the
sti!ness of the point constraints. Expressing the vibration responses of the beam
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y(x, t) and t (x, t) in modal co-ordinates,

y(x, t)"
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i/1
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(t)>

i
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n
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i/1

q
i
(t)/

i
(x)
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where >
i
(x), /

i
(x) are the assumed vibration modes that satisfy the boundary

conditions and q
i
(t) is the generalized co-ordinate.

Substituting equation (3) into equation (2), we obtain
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where
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and qR
i
(t) and /@

i
(x) denote the "rst derivatives of q

i
(t) and /

i
(x); m

ij
is the

generalized mass, and f
i
(t) is the generalized force. Let k
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, k
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be the
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generalized sti!ness. The Lagrange equation may be written as follows:

d
dt A
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LqR B!
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Lq

#

L;
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!
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c

Lq
"

L=
Lq

, =
c
"!qTCqR , (6)

where =
c

is the work due to the viscous damping in the beam. Substituting
equation (4) into equation (6), the equation can be written as
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and in matrix form as

MqK (t)#CqR (t)#Kq(t)"F(t), (8)

where
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, i"1, 2,2, n; j"1, 2,2, nN,
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2.2. THE ASSUMED VIBRATION MODES

The general form of the vibration mode for a uniform Timoshenko beam can be
written as follows:
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4
, are constants, and a, b are frequency

parameters. The vibration modes of a Timoshenko beam with simply supported
ends are obtained as follows according to Huang [14]:
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2.3. MOVING FORCE IDENTIFICATION FROM DISPLACEMENTS

Express y (x
s
, t) in modal co-ordinates,

y(x
s
, t)"
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i/1
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(t) (s"1, 2,2, N

d
), (13)

where N
d
is the number of measurement locations; My (x

s
, t), s"1, 2,2, N

d
N are the

displacements at x
s
. Equation (13) can be written as
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]1
"[>]
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where MyN
Nd

]1
is the vector of displacements at N

d
measurement locations. The

vector of generalized co-ordinates can then be written using the well-known
least-squares pseudo-inverse

MqN
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The modal velocity and acceleration are obtained by di!erentiation, and they are
substituted into equation (8) to get
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n]1
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n]n
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n]1
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The vector of generalized forces MFN can also be found from equation (5) as
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, (17)

where MPN
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are the moving forces on the beam, and
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By the simple least-squares method (LS), the moving force can be calculated
directly from

MPN
Nf

]1
"([B]T

Nf
]n

[B]
n]Nf

)~1[B]T
Nf

]n
MFN

n]1
. (19)

But since the identi"ed forces MPN are not continuous functions of the generalized
forces MFN, are variations in the results would be obtained by the simple
least-squares method. In order to have bounds on the ill-conditioned forces, the
damped least-squares method (DLS) [15] is used and singular-value
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decomposition is used in the pseudo-inverse calculation. Equation (19) can be
written in the following form using the DLS method:

MPN
Nf

]1
"([B]T

Nf
]n

[B]
n]Nf

#jI)~1[B]T
Nf

]n
MFN

n]1
, (20)

where j is the non-negative damping coe$cient governing the participation of the
least-squares error in the solution. The solution of equation (20) is equivalent to
minimizing the function

J(MPN, j)"E[B]MPN!MFNE2#jEMPNE2 (21)

and the second term in equation (21) provides bounds to the solution. When
j approaches zero, the estimated vector MPN approaches the solution obtained from
the least-squares method. In practice, the expected value of j is not known, and
there is no guideline to select the optimal value of j. Both the discrepancy principle
[16] and the generalized cross-validation method [17] cannot be used here. In the
simulation studies described below, the error between the true and the estimated
forces is minimized [18] for a speci"c range of j. In the experimental identi"cation
of the forces, the error in the identi"ed forces between successive computation with
an increment of j is minimized instead.

The identi"ed forces are obtained through the following computations: The
mode shapes >

i
(t) are computed from equation (11). The generalized co-ordinate

q
i
(t) is computed from equation (15) with information on the measured

displacements y (x
s
, t). The derivatives of q and the system matrices are

computed, and the generalized force vector F is obtained from equation (16).
Matrix B is obtained from equation (18) with information of the normal mode
shapes. The non-negative damping coe$cient j is obtained from minimization as
discussed in the last paragraph, and then the moving force vector P is identi"ed
from equations (19) and (20) for the least-squares and damped least-squares
method.

2.4. MOVING FORCE IDENTIFICATION FROM STRAINS

The strain at the bottom of the beam can be expressed in terms of the generalized
co-ordinate as

e(x
s
, t)"!

h
2

n
+
i/l

/@
i
(x

s
)q

i
(t) (s"1, 2,2, N

s
), (22)

where N
s
is the number of measurement points; Me(x

s
, t), s"1, 2,2, N

s
N are the

strain at x
s
. When written in matrix form,

MeN
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]1
"[/@]

Ns
]n

MqN
n]1

. (23)
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The vector of generalized co-ordinates MqN
n]1

can be similarly calculated as for
equation (14):

MqN
n]1

"([/@]T
n]Ns

[/@]
Ns

]n
)~1[/@]T

n]Ns
MeN

Ns
]1

. (24)

The subsequent identi"cation process would be the same as for the displacements.

2.5. MOVING FORCE IDENTIFICATION FROM BOTH STRAINS DISPLACEMENTS

If the strains and displacements are measured at the same time, both of them can
be used in the identi"cation. But the strains and displacements should be scaled by
their respective norms to have dimensionless units.

G
e

EeE
y

EyE H
(Ns`Nd)]1

"G
/@
EeE
>

EyE H
(Ns`Nd)]n

MqN
n]l

, (25)

where E'E is the norm of the vector.

3. SIMULATION AND RESULTS

3.1. SINGLE FORCE IDENTIFICATION ON A SINGLE SPAN BEAM

A single span simply supported beam with a single force moving on top is
studied.

f (t)"40 000[1#0)1 sin(10nt)#0)05 sin(40nt)], N.

The parameters of the beam are as follows: EI"1)274916]1011Nm2,
o"7700 kgm3, oA"12 000 kg/m, ¸"20 m, G"77)69Nm2. The moving speed
is 20 m/s, and the shear coe$cient i is 5

6
. The "rst three modes of the beam are

considered. White noise is added to the calculated displacements to simulate the
polluted measurements as follows. 1, 5 and 10 per cent noise levels are studied.

y"y
#!-#6-!5%$

(1#Ep *N
oise

), e"e
#!-#6-!5%$

(1#Ep* N
oise

),

where y and e are the displacement and strain, respectively, E
p

is the noise level,
N

oise
is a standard normal distribution vector with zero mean value and unit

standard deviation. y
#!-#6-!5%$

and e
#!-#6-!5%$

are the calculated displacement and
strain.

The errors in the identi"ed forces are calculated as

Error"
EP

identified
!P

True
E

EP
True

E
]100%. (26)



TABLE 1

Errors in single force identi,cation (in per cent)

Number of Noise level
vibration modes

1% 5% 10%

1 16)83 17)31 19)08
2 12)04 12)81 15)24
3 10)36 11)31 14)07
4 9)75 10)80 13)72
5 9)51 10)61 13)61
6 9)16 10)32 13)41
7 9)20 10)38 13)49
8 8)79 10)04 13)25
9 9)54 10)72 13)78

10 9)92 11)05 14)04

TABLE 2

Errors in single force identi,cation (in per cent)

Number of Noise level
measuring points

1% 5% 10%

1 104)44 104)52 104)78
2 25)30 25)14 25)69
3 9)94 10)32 12)69
4 9)94 10)32 12)88
5 9)94 10)32 12)88
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Table 1 shows the errors in single force identi"cation with di!erent number of
vibration modes. The responses at ten measurement points evenly distributed along
the beam are simulated from the "rst ten modes. These responses are used in the
identi"cation. Table 2 shows the errors in single force identi"cation with di!erent
number of measuring points, and the "rst three modes are used in the simulation.
Figure 2 shows the identi"ed results with di!erent number of vibration modes.
Displacement responses from the same number of sensors as the vibration modes
are used. The sampling frequency is 2)5 times the maximum natural frequency of
interest for the above studies.

The following results are obtained in the simulation studies:

(1) The results show that the proposed method and algorithms for one moving
force identi"cation are correct. The identi"ed force is very close to the true
force.



Figure 2. Time histories of identi"ed force in single force simulation:**, true force; - - - - , from
3 modes; . . . . , from 6 modes.
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(2) When the number of displacement response is not less than the number of
vibration modes, the error is small, and it decreases with increase in the
number of responses used. This indicates that the number of displacement
responses must not be less than the number of the vibration modes used in
the identi"cation. The number of displacement responses can be taken to be
equal to the number of the vibration modes in the force identi"cation.

(3) The error in the identi"ed force is not sensitive to the noise level in the
response measurements used for the identi"cation.

(4) Table 1 shows that the error in the identi"ed force exhibits little change when
the number of the vibration modes is larger than 3. This may be due to the
fact that the fourth mode is at a frequency of approximately 110 Hz, and the
modal response of the beam is small. Additional vibration modes higher than
the third mode contain less information on the moving forces. This is
supported by Figure 2 where the identi"ed force from both three modes and
six modes are very close to the true force except for some variations close to
the entry and exit of the force.

3.2. TWO-FORCE IDENTIFICATION ON TWO-SPAN CONTINUOUS BEAM

Again a two-span simply supported beam is considered. The total length is 40 m,
and the intermediate support is at the middle of the beam. This support is modelled
with a sti! linear spring of sti!ness equals to 1016 N/m. The parameters of the beam
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are the same as that for example one. The two moving forces are

f
1
(t)"20 000[1#0)1 sin(10nt)#0)05 sin(40nt)], N,

f
2
(t)"20 000[1!0)1 sin(10nt)#0)05 sin(50nt)], N,

and they are moving at 40 m/s. The distance l
s
between the two moving forces is

4 m. Again, the "rst three modes are used in the calculation. The damping ratio is
0)02 for all the three modes. The sampling frequency is 100 Hz and 110 points are
used in the identi"cation. The strain and displacement measurements at the 1

8
, 1
4
and

5
8

spans are used with 5 per cent added noise. The identi"ed forces performed by
both the LS and DLS methods are shown in Figures 3 and 4 in Tables 3 and 4. The
following observations are made:

(1) When the number of measured strains and displacements are not less than
the number of vibration modes used in the identi"cation, acceptable results
could be obtained. This shows that the proposed method and the algorithm
used for two-force identi"cation are correct and they can be used in
a practical multi-forces situation.

(2) The magnitude of error remains relatively constant with di!erent noise level.
This indicates that the proposed method is not sensitive to noise.

(3) There are impulses in the forces at both the entry and exit of the beam. This
discrepancy is found to decrease as the sti!ness of the beam is increased in the
simulation. This is due to the low sensitivity of the bridge responses to the
forces at the beginning and the end of the beam.
Figure 3. Time histories of identi"ed "rst force in two forces simulation:**, true force; - - - - , 1
8
, 1
4
,

5
8
D; . . . . , 1

8
, 1
4
, 5
8
e.



Figure 4. Time histories of identi"ed second force in two forces simulation:**, true force; - - - - , 1
8
,

1
4
, 5
8
D; . . . . , 1

8
, 1
4
, 5
8
e.

TABLE 3

Errors in two-force identi,cation by ¸S method (in per cent)

Locations and 1% error in response 5% error in response 10% error in response
responses

First Second First Second First Second

1/4D, 3/4D * * * * * *
1/8D, 1/4D, 3/8D 73)10 112)78 75)22 104)47 75)63 105)00
1/8D, 1/4D, 5/8D 72)99 112)76 71)61 117)21 79)28 118)44
1/8D, 1/4D, 3/4D 72)21 111)90 69)70 111)40 78)26 83)34
1/8D, 3/4D, 3/8D 73)37 113)41 71)57 110)92 74)79 107)14
1/8D, 1/8s, 1/4D 72)87 114)25 77)15 116)93 73)31 125)75
1/8D, 1/4D, 1/4s 72)87 113)35 73)52 111)52 78)60 101)82
1/8s, 1/4s, 1/8D 72)80 113)79 73)40 113)60 72)17 118)60
1/8s, 1/4s, 3/8s 72)58 111)67 68)83 111)08 75)83 114)98

Note: * Represents the error in larger than 1000%
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(4) The moving forces on a two-span continuous beam can be identi"ed by only
the measuring data on one-span using the two-span continuous beam model
of the structure.



TABLE 4

Errors in two-force identi,cation by D¸S method (in per cent)

Locations and 1% error in response 5% error in response 10% error in response
responses

First Second First Second First Second

1/4D, 3/4D * * * * * *
1/8D, 1/4D, 3/8D 25)72 29)41 25)80 29)78 26)33 30)81
1/8D, 1/4D, 5/8D 25)63 29)31 26)38 29)87 27)38 30)25
1/8D, 1/4D, 3/4D 25)61 29)44 25)64 29)82 27)81 30)01
1/8D, 3/4D, 3/8D 25)75 29)37 26)29 30)30 28)28 31)37
1/8D, 1/8s, 1/4D 25)60 29)35 26)04 29)57 26)83 31)24
1/8D, 1/4D, 1/4s 25)68 29)32 25)66 30)03 28)30 30)06
1/8s, 1/4s, 1/8D 25)75 29)38 25)97 30)06 29)24 30)24
1/8s, 1/4s, 3/8s 25)74 29)33 25)97 29)87 27)28 31)84

Note: * Represents the error in larger than 1000%
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(5) The forces identi"ed from the strains are of the same accuracy as those
obtained from the displacements. But since the strain measurements can be
easily obtained, force identi"cation from the strain measurements would be
very convenient and useful.

(6) The error in the identi"ed forces obtained by using LS is larger than that
from using DLS. This shows the e!ectiveness of the damped least-squares
method in providing bounds on the ill-conditioned forces with an optimal
damping coe$cient j.

4. EXPERIMENT AND RESULTS

The experimental set-up is shown in Figure 5. The main beam, 3678 mm long
with a 100 mm]25 mm uniform cross-section, is simply supported. A U-shaped
aluminium section is glued to the upper surface of the beams as a direction guide for
the car. The model car is pulled along the guide by a string wound around the drive
wheel of an electric motor. Seven photoelectric sensors are evenly mounted onto
the beam to measure and monitor the moving speed of the car. They are located on
the beam at an interval of 0)776 m to check on the uniformity of the speed. Seven
strain gauges are evenly located on the under system of the beam at one-eighth span
to measure the responses of the beam. An eight-channel dynamic testing and
analysis system is used for data collection and analysis in the experiment. The
measured frequencies of the model car and the beam are shown in Table 5. The
sampling frequency is 2 kHz. The data record time duration is 6 s. The model car
has two axles at a space of 0)557 m and it runs on four rubber wheels. The mass of
he whole car is 16)6 kg.

Figure 6 shows a sample of the measured strains at di!erent locations. The "rst
three modes are used in the identi"cation. Correlation coe$cients are calculated



Figure 5. Diagrammatic drawing of experimental set-up.

TABLE 5

Natural frequencies of the model car and main beam

Mode Model car (Hz) Main beam (Hz)

1 7)82 3)67
2 9)77 16)83
3 11)72 37)83
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between the reconstructed and measured responses, and they are shown in Table 6.
Figures 7 and 8 show the identi"ed results by using strains at 1

4
, 1
2
and 3

4
span. Figure

9 shows a comparison between the measured and the reconstructed strains at 3
8

span by using the damping least-squares method (DLS) and by using the
least}squares method (LS). The two identi"ed forces are added together to become
a resultant force as shown in Figure 10. The following conclusions are obtained
from the experiments.

(1) Two impulses can be observed in the identi"ed forces at around 0)6 and 3)3 s
as shown in Figures 7, 8, and 10. These two moments correspond to the entry
of the second axle and the exit of the "rst axle on the bridge deck, where the



Figure 6. The recorded time histories from sensors in experiment.

Figure 7. Time histories of identi"ed "rst force in two forces experiment:**, 1
4
, 1
2
, 2
4
e (DLS); - - - - ,

1
4
, 1
2
, 3
4
e (LS).
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Figure 8. Time histories of identi"ed second force in two forces experiment: **, 1
4
, 1
2
, 3
4
e (DLS);

- - - - , 1
4
, 1
2
, 3
4
e (LS).

Figure 9. Comparison of measured and reconstructed strain at 3
8

span: **, measured response;
- - - - , 1

4
, 1
2
, 3
4
e (DLS); . . . . , 1

4
, 1
2
, 3
4
e (LS).
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Figure 10. Time histories of identi"ed combined force in two forces experiment: **, 1
4
, 1
2
, 3
4
e

(DLS); - - - - , 1
4
, 1
2
, 3
4
e (LS).

TABLE 6

Correlation coe.cients between measured and calculated strain at 3
8

span

Locations DLS LS

1/8a, 1/2s, 3/4s 0)9391 0)9335
1/4s, 1/2s, 3/4s 0)9391 0)9459
1/8s, 1/2s, 7/8s 0)9431 0)9352
1/8s, 1/4s, 1/2s 0)9189 0)6895
1/8s, 1/4s, 5/8s 0)9007 0)6736
1/8s, 1/4s, 7/8s 0)8936 0)6774
5/8s, 3/4s, 7/8s 0)7288 0)4356

1/8s, 1/4s, 3/4s, 5/8s 0)9294 0)9136
1/8s, 1/4s, 3/4s, 7/8s 0)8928 0)7576

1/8s, 1/4s, 1/2s, 3/4s, 7/8s 0)9459 0)9425
1/8s, 1/4s, 1/2s, 5/8s, 3/4s,7/8s 0)9407 0)9374

1/8s, 1/4s, 5/8s, 7/8s 0)9240 0)8976
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forcing system switches from a single force excitation to a two-races
excitation. They correspond to the points of discontinuation of the
dependence between the forces and the responses.

(2) The results obtained from the damped least-squares method and the
least-squares method are shown in Figures 7}10 and in Table 6 for
comparison. The identi"ed forces are almost identical in the middle length of
the time duration. But when the forces are getting on and o! the beam, large
impulses are identi"ed by the least-squares method but not by the damped
least-squares method. The latter method is therefore more accurate and
reliable in the identi"cation.

(3) The reconstructed strains from the identi"ed forces are close to the measured
strain as shown in Figure 9. Almost all the correlation coe$cients in Table
6 obtained from the DLS method larger than 0)89. These indicate that the
proposed approach using DLS is e!ective in the force identi"cation.

5. CONCLUSION

Computation simulations and laboratory tests show that:

(1) The proposed moving force identi"cation method for a multi-span
continuous non-uniform beam is e!ective, and acceptable results can be
obtained.

(2) Computation simulations show that the error in the identi"ed forces are
acceptable when the number of measuring points is not less than the number
of vibration modes.

(3) Both the strain and displacement measurements can be used in the moving
force identi"cation.

(4) The simulation and experimental results show that the damped least-squares
method is better than the least-squares method in suppressing the
unbounded ill-conditioned forces.
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APPENDIX: NOMENCLATURE

A(x) area of cross-section
c
ij

generalized damping
EI(x) #exural sti!ness of beam
f
i
(t) ith generalized force

F generalized force matrix
G shear modulus
k sti!ness of point constraint
k
ij

generalized sti!ness
K generalized sti!ness matrix
m

ij
generalized mass

M generalized mass matrix
P
i
(t) ith moving load

q
i
(t) ith generalized co-ordinate

¹ kinetic energy
;

e
bending energy of beam

;
Q

potential energy due to point constraints
v(t) speed of moving load
= work done by the moving loads
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x
i

initial position of ith moving load
x
l

location of measurement location
y(x, t) displacement function of beam
>
i
(x

s
), /

i
(x) assumed displacement mode shapes

c(x) radius of gyration of cross-section
d(t) Dirac delta function
e(x

s
, t) measured strain at location x

si shear coe$cient
j non-negative damping coe$cient
t(x, t) angle of rotation of cross-section
E'E norm of a vector of matrix
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